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We present smoothing algorithms for piecewise linear curves, surfaces, and triple
lines of intersection of surfaces that are based on the the idea of sequentially relax-
ing either individual nodes or edges in the mesh. Each relaxation is designed both to
smooth the mesh and to conserve down to round-off error the area or volume enclosed
by the curve or surface. For the case of smoothing surfaces and lines of intersection of
surfaces, each relaxation consists of a pure smoothing component and a volume con-
serving correction which is chosen to be of minimum norm. Since surfaces and triple
intersection lines can be conservatively smoothed, the algorithms are suitable for im-
proving multimaterial grids used by physics simulations where exactly conserving
the volume of each individual material may be a requirement or at least highly desir-
able. The algorithms are also suitable for smoothing piecewise linear functions of one
or two variables while simultaneously preserving their integrals. We show examples
of the application of the more powerful edge-based algorithms to curve, surface, and
multimaterial volume grids and to a thin film simulation.c© 2001 Academic Press

1. INTRODUCTION

Curves or surfaces obtained from physics-based simulations are frequently “jagged” or
“non-smooth” and as such may be unsuitable as input for subsequent simulations. For
example, Potts model simulations of metallic grain growth describe the interface between
differing grains as a series of “stair-steps.” The jagged stair-step interface is an artifact
of the simulation and might produce incorrect results in subsequent simulations unless
the interface is smoothed. Another example would be Lagrangian surface motion under
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a computational fluid dynamics flow which could leave surfaces highly convoluted after
several time-steps and unsuitable for further time-stepping unless they are smoothed.

By “smoothing” a surface grid, we mean (1) adjacent facets of the surface grid have
normals adjusted to vary more gradually, (2) node densities are equidistributed on the
surface, and (3) the aspect ratios of facets are improved.

A popular approach to surface grid smoothing has been to rely on a mapping from a
parametric space to the surface and to smooth the grid in the parametric space [5, 10]. There
are drawbacks to this approach. First, a mapping to a parametric space must exist, and often
surfaces generated by physical simulations are unstructured and are not easily parameteri-
zable. Second, smoothing of the surface grid in the parametric domain—while preserving
theshapeof the surface—does not necessarily preserve the volume that the surface grid en-
closes, due to the discreteness of the grid. This can be unacceptable in physical simulations.
Also, exact preservation of surface shape is undesirable for “stair-step” surfaces.

Another approach to surface grid smoothing is evolution of the surface grid by mean
curvature [2, 6, 8]. This approach will easily erase jaggedness of the surface, but does not
conserve volume and requires a sophisticated PDE solver.

In this paper, we present a non-parametric, volume conserving approach to the smooth-
ing of piecewise linear surface grids. Our approach will, for example, rapidly deform a
nonsmooth closed surface into a smoothed surface which encloses the same volume down
to round-off error. The surface grid can be unstructured and the resulting grid will satisfy
the three conditions for smoothness presented above. To accomplish this, our volume con-
serving approach allows small deformations in theshapeof the surface geometry. However,
the degree of surface deformation can be limited by controlling the number of smoothing
iterations performed. Because the algorithms are locally conservative, they are applicable
to open as well as closed curves and surfaces. They could also be used to smooth piece-
wise linear functions in one or two variables with compact support while preserving their
integral. (However, see note in Section 6.)

Many iterations of volume conserving smoothing will cause much change in the shape
of the curve or surface. For example, multiple application of the smoother will turn a cube
into a sphere which encloses the same volume. For most physical simulations, we wish to
change the curve or surface shape only enough to allow the simulation to proceed. Thus it
is most appropriate for the application designer who will utilize these volume conserving
smoothing algorithms to make decisions on appropriate termination criteria. These criteria
might include iterating until some mesh quality improvement measure is met or a maximum
allowable surface deformation is reached. For example, one could measure the decrease in
the`2 norm of the vector consisting of all the angles between the normals of adjacent surface
facets (a vector of length equal to the number of edges in the surface) [3].

In Section 2 we develop area conservative smoothing of piecewise linear curves. In Sec-
tion 3 we develop volume conservative smoothing of piecewise linear surfaces. In Section 4
we exhibit algorithms for smoothing of triple intersection lines of surfaces which conserve
individually all volumes incident on the lines. In Section 5 we apply our algorithms to a
thin film simulation. Finally in Section 6 we conclude by tying up some loose ends.

2. AREA CONSERVING SMOOTHING OF CURVE GRIDS

Consider a closed non-self-intersecting curve0 = (x0, x1, . . . , xn−1, xn = x0) consisting
of n line segments inIR2. Say0 encloses a regionR (Fig. 1). We seek a smoothing operation
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FIG. 1. Closed curve0 enclosing regionR.

on this curve that can be performed locally at eachxi that involves slightly altering the po-
sition ofxi based on nearby or adjacent data points (say{xi−m, xi−m+1, . . . , xi+m}, msmall).
More generally, the smoothing operation could depend on points in{xi−m, xi−m+1, . . . , xi+m}
and involve moving one or more points in this neighborhood. The smoothing operation
should be chosen to not alter the area ofR. If we perform the local smoothing operation in
each local neighborhood in the curve in some order, this is called asweep. We desire that
only a small number of sweeps through the curve need be performed to smooth the overall
appearance of the curve.

If now 0 is allowed to intersect itself, it is thesignedarea ofR (i.e., with respect to the
counter-clockwise orientation) we wish to conserve. Moreover, we can extend our ideas to an
open curve0 = (x0, x1, . . . , xn−1, xn 6= x0), by requiring that the sought-after smoothing
operations conserve area in the closed curve0 = (x0, x1, . . . , xn−1, xn, x0).

The simplest possible area conserving smoothing operation is depicted in Fig. 2. Here
we consider the three pointsx0, x1, x2 along0. By moving the central pointx1 parallel to
the line segmentx0x2, we are assured conservation of area. Further, by movingx1 such that
the projection ofx1 ontox0x2 occurs midway betweenx0 andx2, we have achieved equal
spacing of the segmentsx0x1 andx1x2 when projected onto the segmentx0x2.

We now formally state the algorithm based on this one-point smoothing operation. For a
vectorv = (x, y) in 2-D, we definev⊥ ≡ (−y, x). Let A021= 1

2(x2− x0)
⊥ · (x1− x0) be

FIG. 2. One-point smoothing operation: Movement ofx1 parallel tox0x2 assures conservation of area under
curve(x0, x1, x2).
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the (signed) area of triangle1x0x2x1. Then

h = 2A021

‖x2− x0‖ (1)

is the height ofx1 above the baseline segmentx0x2. n̂ = (x2−x0)
⊥

‖(x2−x0)⊥‖ is the unit normal to
the baselinex0x2. Our smoothing operation thus involves repositioningx1 from its original
position to

xnew
1 = 1

2
(x0+ x2)+ hn̂. (2)

Sweeping through the nodes in sequential order, we obtain the following algorithm:

ALGORITHM 1. Area conserving smoothing of a closed plane curve using single-node
relaxations.

Repeat (sweep) until “done”
Do i = 0, . . . ,n− 1

[Perform smoothing operation on neighborhood{xi , xi+1, xi+2}
(i.e., relax nodexi+1)]

n̂← (xi+2− xi )
⊥

‖(xi+2− xi )⊥‖
Ai,i+2,i+1← 1

2(xi+2− xi )
⊥ · (xi+1− xi )

h← 2 Ai,i+2,i+1

‖(xi+2− xi )⊥‖
xi+1← 1

2(xi + xi+2)+ hn̂.

(If 0 is not closed, Algorithm 1 is modified to not relax the endpoint nodes.) Al-
gorithm 1, although simple, suffers from the following serious deficiency. Referring to
Fig. 2, and calling the direction−−→x0x2 the direction “tangential” to0 and the direction
orthogonal to−−→x0x2 the “normal” direction, we see that the one-point smoothing opera-
tion smooths only in the the tangential direction. Any smoothing in the normal direc-
tion is forbidden by the conservation of area requirement. Because of this lack of normal
smoothing, some star-shaped regions (Fig. 3) will not be affected by the operation. We
conclude that it is necessary to design a local smoothing operation that includes normal
smoothing.

Now consider four sequential pointsx0, x1, x2, x3 along0. We take−−→x0x3 to be the
direction tangential to the curve and the direction orthogonal to−−→x0x3 to be normal to the
curve. If we simultaneously solved for the positions ofx1, x2 subject to the constraint of area
conservation, normal smoothing is possible. This is because conservation of area represents
a single constraint in the normal direction, but there are two degrees of freedom available
(the normal components ofx1 andx2).

Thus, consider the following smoothing operation: Movex1, x2 so that the projection of
x1 ontox0x3 is one-third of the way betweenx0 andx3 and the projection ofx2 is two-thirds
of the way betweenx0 andx3. Furthermore, the distances ofx1 andx2 away fromx0x3

are set to be equal and this distance (h in Fig. 4) is taken to conserve area. If this is done,
smoothing occurs in the normal direction, as well as in the tangential direction.

The calculation ofh is straightforward: The (signed) areaA0321 of the quadrilateral
(x0, x3, x2, x1) cannot be altered. Repositioning of the pointsx1, x2 so that their projections
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FIG. 3. Star-shaped region is invariant under (and hence not smoothed by) Algorithm 1.

are equally spaced implies that the area of the quadrilateral(x0, x3, x2, x1) will be 2
3hl,

wherel is the length ofx0x3. Thus we require

h = 3

2

A0123

l
.

The above smoothing operation can be interpreted as being a smoothing operation act-
ing on theedgex1x2. Thus, to perform a smoothing sweep through0 using the above
smoothing operation, we perform the operation on all the edges of0 in some order. For
example, if we usesequential order, we would perform the smoothing operation on the edge
x1x2, then perform it on the edgex2x3 and continue until we have smoothed the last edge
xnx1.

FIG. 4. Two-point (edge) smoothing.x1x2 moved to be parallel tox0x3 with projected endpoints at1
3
l and 2

3
l .

Choosingh = 3
2

A0123
l

conserves areaA0123.
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FIG. 5. Before and after smoothing of a closed stair-step curve using Algorithm 2 with 20 sweeps. Area of
regionR conserved down to round-off.

ALGORITHM 2. Area conserving smoothing of a closed plane curve using edge
relaxations.

Repeat (sweep) until “done”
Do i = 0, . . . ,n− 1

[Perform smoothing operation on neighborhood{xi , xi+1, xi+2, xi+3}
(i.e., relax edgexi+1, xi+2)]

n̂← (xi+3− xi )
⊥

‖(xi+3− xi )⊥‖
Ai,i+3,i+2,i+1← 1

2(xi+3− xi )
⊥ · (xi+2− xi )+ 1

2(xi+2− xi )
⊥ · (xi+1− xi )

[signed area of quad(xi , xi+3, xi+2, xi+1)]

h← 3
2

Ai,i+3,i+2,i+1

‖(xi+3− xi )⊥‖
xi+1← 2

3xi + 1
3xi+3+ hn̂

xi+2← 1
3xi + 2

3xi+3+ hn̂.

In Fig. 5, we show the results of performing 20 sweeps on a closed curve. Area is conserved
to within round-off error, and the curve is very smooth. Clearly, further iterations will not
affect the appearance of the smoothed curve. In Fig. 6, we show the results of performing
Algorithm 2 with 10 sweeps on an open curve0, holding the first and last points fixed. If0

FIG. 6. Before and after smoothing of an open curve using Algorithm 2 with 10 sweeps.
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were closed by addition of a segment between the first and last points, the area enclosed by
0 would be conserved down to round-off error. Further iterations will continue to deform
the curve.

3. VOLUME CONSERVING SMOOTHING OF SURFACE GRIDS

Now consider a closed surfaceS= ⋃ Ti , where theTi are planar triangular facets
Ti = Txi1xi2xi3

. We wish to perform a local smoothing operation in sweeps over small neigh-
borhoods throughout the surface which will have the net effect of smoothing the surface
without changing the amount of volume enclosed by the faceted surface. (If the surface is
subdivided by other types of geometric facets—such as quadrilaterals—they can be sub-
divided into triangular facets for purposes of the following smoothing schemes.) More
generally, ifS is not closed we seek a local smoothing operation that does not alter the
enclosed volume whenShas been closed by some choice of additional triangles.

Similar to the previous section, we first consider the simple operation of altering the
position of a single node atx based on data from its immediate neighbors. Consider Fig. 7,
here the node atx is surrounded by the pointsx(1), x(2), . . . , x(n), which form a counter-
clockwise cycle when viewed from “outside” the surface. We define

e( j ) = x( j ) − x.

Suppose we move the node atx toxs ≡ x+ dxs through the action of a smoothing operation
only depending on data in the immediately surrounding neighborhood. Since this motion
will in general alter the volume enclosed by the surface, we restore the correct volume by
further repositioning the central node byhn̂. That is, to ensure conservation of volume, we
further move the central node by some multipleh of a prudently chosen direction. Thus,
the node will undergo a total displacement fromx to x+ dx, where

dx = dxs+ hn̂. (3)

In fact, we can easily solve for the directionn̂ that minimizes the norm of the volume

FIG. 7. Node atx on triangular faceted surface surrounded byn neighbors atx(1), ..., x(n).
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correction movement‖hn̂‖ and it will be a direction that could be reasonably considered
to be “normal” to the undisturbed surface atx.

Indeed, when the node is moved fromx to x+ dxs+ hn̂, the change of volume is given
by

6dV =
n∑

j=1

(dxs+ hn̂) · e( j ) × e( j+1) = (dxs+ hn̂) ·
n∑

j=1

e( j ) × e( j+1). (4)

(The “6” arises from use of the volume formula for tetrahedra employed for the terms in
the sum in (4).) ThusdV = 0 implies

h = −dxs ·∑n
j=1 e( j ) × e( j+1)

n̂ ·∑n
j=1 e( j ) × e( j+1)

.

Thus if we choose

n̂ =
∑n

j=1 e( j ) × e( j+1)∥∥∑n
j=1 e( j ) × e( j+1)

∥∥ , (5)

then‖hn̂‖ will be minimized and our minimal volume corrective movement will be

hn̂ = −(dxs · n̂)n̂. (6)

Note thatn̂ could reasonably be considered to be the “normal” to the undisturbed surface
atx, since it is the normalized sum of area vectors of all triangles incident onx.

It remains to specify the smoothing scheme that yieldsxs based on nearest neighbor
information. We choose Laplacian smoothing, defined by

xs = x+ dxs ≡
∑n

j=1 x( j )

n
.

With this choice, our smoothing scheme (3), (6) is entirely analogous to our simple smooth-
ing scheme for curves (2). However, the correction (6) can be used with any smoothing
schemex→ xs, and indeed smoothing schemes more sophisticated than Laplacian smooth-
ing are available [4].

ALGORITHM 3. Volume conserving smoothing of a surface using single-node relax-
ations.

Repeat (sweep) until “done”
For each nodex surrounded by neighbors{x(1), x(2), . . . , x(n)}

n̂←
∑n

j=1
e( j ) × e( j+1)∥∥∑n

j=1
e( j )×e( j+1)

∥∥
dxs←

∑n

j=1
x( j )

n − x
x← x+ dxs− (dxs · n̂)n̂.

We give our simple volume corrected smoothing scheme with Laplacian smoothing in
Algorithm 3. The weakness of Algorithm 3 is identical to that of the analogous scheme
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FIG. 8. Nomenclature for nodes surrounding edgex1x2 on a triangular faceted surface.

(Algorithm 1) presented in the previous section. Both schemes are simple, but lack smooth-
ing in the direction normal to the surface, since conservation of area or volume fully de-
termines the normal distance of the relaxed node from the surface. As a consequence,
Algorithm 3 will leave some star-shaped polyhedra (analogous to Fig. 3) unchanged.

Analogous to the development of the previous section, we develop a smoothing operation
which exhibits smoothing normal to the surface, and which involves relaxing two adjacent
neighbors—thus we relaxedgeson the surface. Consider Fig. 8; here we contemplate
relaxing the edgex1x2 based on data from the surrounding nodes.

Herex1 is surrounded by the nodesx(1)1 , x
(2)
1 , . . . , x

(n1)
1 , andx2 is surrounded by nodes

x(1)2 , x
(2)
2 , . . . , x

(n2)
2 , such that

x2 = x(1)1 and x1 = x(1)2 .

We definee( j )
i = x( j )

i − xi . We also define

A i =
ni∑

j=1

e( j )
i × e( j+1)

i , i = 1, 2. (7)

We now contemplate movingxi to xs
i ≡ xi + dxs

i by some smoothing operation and then
further shifting the two nodes byhn̂, which is a multipleh of an optimal direction̂n chosen
such that volume is conserved and‖hn̂‖ is minimal. We derive the optimal changehn̂ as
follows. The two nodes undergo the total displacement

dxi ≡ dxs
i + hn̂, i = 1, 2. (8)

The movement of the node atx1 to x1+ dx1 causes the triangles{(x1, x
( j )
1 , x( j+1)

1 ) | 1≤
j ≤ n1} to “sweep out” volume between their initial positions and their final positions at
{(x1+ dx1, x

( j )
1 , x( j+1)

1 ) | 1≤ j ≤ n1}. The volume change caused by motion of the node
atx1 tox1+ dx1 is thus equal to the volume of the tetrahedra{(x1, x1+ dx1, x

( j )
1 , x( j+1)

1 ) | 1≤
j ≤ n1}, or

6dV1 =
n1∑
j=1

dx1 · e( j )
1 × e( j+1)

1 = dx1 · A1. (9)
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Next, the movement of the node atx2 tox2+ dx2 creates a volume change similar to (9), but
we must take into account that the node atx1 = x(1)2 has already been moved tox1+ dx1.
That is,e(1)2 has been changed toe(1)2 + dx1. Thus, defining

ẽ(1)2 = e(1)2 + dx1

ẽ( j )
2 = e( j )

2 , 2≤ j ≤ n2,

we have

6dV2 =
n2∑
j=1

dx2 · ẽ( j )
2 × ẽ( j+1)

2

=
n2∑
j=1

dx2 · e( j )
2 × e( j+1)

2 + dx2 · dx1× e(2)2 + dx2 · e(n2)
2 × dx1

= dx2 · A2+ dx2 ·
(
e(n2)

2 − e(2)2

)× dx1

= dx2 · A2+ dx2 · v× dx1,

where

v ≡ e(n2)
2 − e(2)2 = e(2)1 − e(n1)

1 . (10)

Thus conservation of volume requires us to have

0= 6dV = 6dV1+ 6dV2 = dx1 · A1+ dx2 · A2+ dx2 · v× dx1. (11)

Substituting (8) into (11) and solving forh yields

h = −dxs
1 · A1+ dxs

2 · A2+ dxs
2 · v× dxs

1

n̂ · (A1+ A2+ v× (dxs
1− dxs

2

)) . (12)

Thus‖hn̂‖ is minimized if we choose

n̂ = A1+ A2+ v× (dxs
1− dxs

2

)∥∥A1+ A2+ v× (dxs
1− dxs

2

)∥∥ . (13)

That is, the distance the edgex1x2 is translated to recover volume is minimal when we
chooseh andn̂ according to (12) and (l3).

It remains to specify the smoothing scheme that yields thexs
i based on nearest neighbor

information. We choose simultaneous Laplacian smoothing of bothxi . That is, we require

xs
1 =

1

n1

(
xs

2+
n1∑
j=2

x( j )
1

)
(14)

and

xs
2 =

1

n2

(
xs

1+
n2∑
j=2

x( j )
2

)
. (15)
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Substituting (15) into (14), we obtain

xs
1 =

1

n1n2− 1

n2∑
j=2

x( j )
2 +

n2

n1n2− 1

n1∑
j=2

x( j )
1 . (16)

We can now computexs
1, using (16), and then computexs

2 by substituting the result
into (15).

However, the correction given by (8), (12), and (l3) can be used with any smoothing
scheme that modifies the edgex1x2. For one of our test problems, we instead used under-
relaxed Laplacian smoothing:

xs
i ← (1− ω)xi + ωxs

i , i = 1, 2,

where thexs
i on the right-hand side are the positions yielded by simultaneous Laplacian

smoothing (14), (15) and thexs
i on the left-hand side are the positions given by underrelaxed

Laplacian smoothing with 0< ω ≤ 1. This allows smoothing to be slowed down in order
to more finely control surface deformation from iteration to iteration. Algorithm 4 gives our
volume conserving smoothing scheme with edge relaxation by underrelaxed simultaneous
Laplacian smoothing.

ALGORITHM 4. Volume conserving smoothing of a surface using edge relaxations.

Repeat (sweep) until “done”
For each edgex1x2 surrounded by neighbors{x( j )

i } j=1,...,ni
i=1,2 (Fig. 8), relax edge:

A i ←
∑ni

j=1 e( j )
i × e( j+1)

i , i = 1, 2

v← e(n2)
2 − e(2)2

xs
1← 1

n1n2−1(
∑n2

j=2 x( j )
2 + n2

∑n1
j=2 x( j )

1 )

xs
2← 1

n2
(xs

1+
∑n2

j=2 x( j )
2 )

dxs
i ← ω(xs

i − xi ), i = 1, 2, 0< ω ≤ 1

A ← A1+ A2+ v× (dxs
1− dxs

2)

If (‖A‖ > “a tiny number”) then

n̂← A/‖A‖
h←−(dxs

1 · A1+ dxs
2 · A2+ dxs

2 · v× dxs
1)/‖A‖

xi ← xi + dxs
i + hn̂, i = 1, 2.

Figures 9 and 10 show results of smoothing grids with nonsmooth features using
Algorithm 4. In Fig. 9, a cube is depicted after 0, 10, 100, and 1000 sweeps withω = 1.
Volume is conserved throughout. Note that after only 10 sweeps the cube has been well
smoothed at the 12 edges.

In Fig. 10, we initially randomly perturb the node positions of the lower half of a sphere and
use Algorithm 4 for 1, 5, 10, 100, and 1000 sweeps. We useω = 0.1 to allow the algorithm
to make changes more gradually. (If we had usedω = 1, it would roughly take 1/10 as many
iterations to produce the results depicted.) In both these examples, the algorithm seems to
be moving the grid toward a spherical shape even though the grid topology is nearly regular
in Fig. 10 and highly irregular in Fig. 9.
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FIG. 9. Cube after 0, 10, 100, and 1000 sweeps over the surface using Algorithm 4 withω = 1.

4. VOLUME CONSERVING SMOOTHING OF TRIPLE LINES

In simulations involving several volume regions whose union comprises the full com-
putational domain, it may be necessary to perform smoothing on the surfaces of all the
volumes with the requirement that each individual volume is conserved. (We refer to each
distinct region as a “material,” and we are here concerned with the problem of smoothing
the boundaries of all materials such that all material volumes are conserved.) Algorithms 3
and 4 are adequate for smoothing nodes that exist on surfaces separating two distinct mate-
rials or one material and the exterior of the domain but cannot be used for lines of multiple
intersection where three or more materials intersect or two or more materials intersect with
the external boundary.

We now generalize our schemes to allow smoothing of nodes along these intersection
lines. Suppose three materials “1,” “2,” and “3” surround a line of multiple intersection (a
“triple” line). For a node atx in the interior of the triple line, Algorithm 3 allows us to
conserve material 1 (and thus the sum of the volumes of materials 2 and 3) by correcting
smoothing of the node with respect to the boundary surface of material 1. This involves
restricting motions of the node to a plane perpendicular ton̂(1) given by (5) with thee( j )

chosen to lie on the surface bounding material 1. Further, if we now consider the conservation
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FIG. 10. “Noisy” sphere after 0, 1, 5, 10, 100, and 1000 sweeps over the surface using Algorithm 4 with
ω = 0.1.

of material 2 (versus the union of materials 1 and 3), we are forced to restrict motions of the
node to a plane perpendicular ton̂(2) given by (5), with thee( j ) chosen to lie on the surface
bounding material 2.

Thus if motion of the node is restricted to be in the line in the directionn̂(1) × n̂(2)

‖n̂(1) × n̂(2)‖ ,
materials 1 and 2 (and hence material 3) are conserved. This yields Algorithm 5. In Algo-
rithm 5, the smoothing scheme only uses data given by the positions of the preceding and
following nodes on the triple line, and can be viewed as a combination of Algorithms 1
and 3.
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ALGORITHM 5. Volume conserving smoothing of a triple line using single-node relax-
ations.

Repeat (sweep) until “done”
For each nodexi in the interior of the triple line preceded byxi−1 and succeeded
by xi+1

n̂(1)←
∑n

j=1
e( j ) × e( j+1)∥∥∑n

j=1
e( j ) × e( j+1)

∥∥ using edges from the surface of material “1”

n̂(2)←
∑n

j=1
e( j ) × e( j+1)∥∥∑n

j=1
e( j ) × e( j+1)

∥∥ using edges from the surface of material “2”

norm← ‖n̂(1) × n̂(2)‖
If (norm > “a tiny number”) then

t ← (n̂(1) × n̂(2))/norm
dxs

i ← 1
2(xi−1+ xi+1)− xi

dxi ← (dxs
i · t)t

xi ← xi + dxi .

From this analysis, we can see that, in the absence of some special restrictions, we cannot
smooth single nodes on quadruple intersection lines, because all conditions of volume
conservation would require that motion of the node be orthogonal to three vectors, which
usually implies zero motion.

Our final algorithm involves smoothing edges on a triple intersection line between ma-
terials 1, 2, and 3. As in the previous cases where we compared edge relaxation to single
node relaxation, relaxing edges is preferable to relaxing single nodes due to the possibility
of smoothing action orthogonal to the triple line.

If we conserve volumes of materials 1 and 2, volume of material 3 will automatically be
conserved. Thus looking at (11), we write

0= 6dV(α) = dx1 · A(α)
1 + dx2 · A(α)

2 + dx2 · v(α) × dx1, α = 1, 2. (17)

Here the meaning of (17) is identical to (11), except here the parameterα refers to the
particular material or material surface. Thus forα = 1, A(1)

i andv(1) are computed using
(7) and (10) with thee( j ) chosen to lie on the surface bounding material 1. Ifα = 2,
quantities are computed using edges lying on the surface bounding material 2. Thedxi are
the displacements of the endpoints of the triple line edge being relaxed. The displacements
dxi are assumed to be of the form

dxi = dxs
i + c, i = 1, 2. (18)

Here thedxs
i are displacements due to a smoothing operation, andc is a rigid displacement

of the whole edge designed to restore the volumes of materials 1 and 2. For givendxs
i , we

will determine thec of least norm.
Indeed, substituting (18) into (17), we obtain

c · A(α) = g(α), α = 1, 2, (19)

where

A(α) ≡ A(α)
1 + A(α)

2 + v(α) × (dxs
1− dxs

2

)
and

g(α) ≡ −dxs
1 · A(α)

1 − dxs
2 · A(α)

2 − dxs
2 · v(α) × dxs

1, α = 1, 2.
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From this we can see that forc to be of minimum norm, it must be of the form

c= h(1)A(1) + h(2)A(2). (20)

(Otherwise, supposec= h(1)A(1) + h(2)A(2) + d satisfies (19), for some nonzerod ⊥ span
(A(1),A(2)). Thenc′ ≡ h(1)A(1) + h(2)A(2) satisfies (19) with‖c′‖ < ‖c‖.) Therefore, as-
suming the form (20), (19) yields the system

[
A(1) · A(1) A(1) · A(2)

A(1) · A(2) A(2) · A(2)

][
h(1)

h(2)

]
=
[

g(1)

g(2)

]
. (21)

If A(1) is not parallel toA(2), the matrix on the left-hand side of (21) is symmetric positive
definite and hence invertible. In this case, the solution is given by

h(1) = 1∥∥A(1)
∥∥2∥∥A(2)

∥∥2− (A(1) · A(2)
)2

(∥∥A(2)
∥∥2

g(1) − A(1) · A(2)g(2)
)

(22)

h(2) = 1∥∥A(1)
∥∥2∥∥A(2)

∥∥2− (A(1) · A(2)
)2

(−A(1) · A(2)g(1) + ∥∥A(1)
∥∥2

g(2)
)
. (23)

ALGORITHM 6. Volume conserving smoothing of a triple line using edge relaxations.

Repeat (sweep) until “done”
For each edgex1x2 in the interior of the triple line preceded byx0 and succeeded byx3

A(1)
i ←

∑n
j=1 e( j ) × e( j+1) using edges from the surface of material “1,”i = 1, 2

v(1)← e(n2) − e(2) using edges from the surface of material “1”
A(2)

i ←
∑n

j=1 e( j ) × e( j+1) using edges from the surface of material “2,”i = 1, 2
v(2)← e(n2) − e(2) using edges from the surface of material “2”
dxs

1← ( 2
3x0+ 1

3x3)− x1

dxs
2← ( 1

3x0+ 2
3x3)− x2

A(α)← A(α)
1 + A(α)

2 + v(α) × (dxs
1− dxs

2), α = 1, 2
det← ‖A(1)‖2‖A(2)‖2− (A(1) · A(2))2

If (det > “a tiny number”) then
g(α)←−dxs

1 · A(α)
1 − dxs

2 · A(α)
2 − dxs

2 · v(α) × dxs
1, α = 1, 2

h(1)← (‖A(2)‖2g(1) − A(1) · A(2)g(2))/ det
h(2)← (−A(1) · A(2)g(1) + ‖A(1)‖2g(2))/ det
xi ← xi + dxs

i + h(1)A(1) + h(2)A(2), i = 1, 2.

In Algorithm 6, the smoothing scheme only uses data given by the positions of the
preceding and following nodes on the triple line, and hence can be viewed as a combination
of Algorithms 2 and 4.

In Fig. 11, we show the action of Algorithm 6 on a multimaterial mesh consisting of
four materials whose surface nodes have been perturbed to create a nonsmooth initial state.
Interior edges on the surfaces were subjected to 20 sweeps of Algorithm 4 withω = 1, and
interior edges on the triple lines were subjected to 20 sweeps with Algorithm 6. Note that
there are two triple lines running through the interior of the figure and the other “triple lines”
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FIG. 11. “Noisy” four-material grid before and after 20 sweeps over all surfaces and triple lines using
Algorithm 6 and Algorithm 4 withω = 1.

run on the surface at the intersection of two materials and the exterior boundary. For the
external triple lines, one can consider the “third material” conserved to be the complement
of all the materials—the “outside.” In the final grid, the surfaces are smooth, the volumes
of all four materials are preserved, and the triple lines have been smoothed out as desired.

5. APPLICATION TO THIN FILM EVOLUTION

To illustrate the application of volume conserving smoothing, we will show how it main-
tains mesh quality during simulation of the evolution of a thin film. TopoSim3D [9] is
a software simulator that models the chemical and physical processes involved in the
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formation of thin films. It models (a) the transport of materials from the vapor phase of
a reactor to the growth surface, (b) the reactive chemistry that occurs at the vapor/surface
interface, and (c) the motion of the vapor/surface interface as material is deposited or
removed by the chemistry. Processes (a) and (b) provide an estimate of the rate at which

FIG. 12. (a)–(c). Thin film simulations with and without volume conserving smoothing. (a) Surfaces at time
t = 0.8 s before three iterations of volume conserving smoothing. (b) Surfaces at timet = 0.8 s after three
iterations of volume conserving smoothing—only very subtle changes. (c) Simulation without volume conserving
smoothing at time of failure,t = 0.504 s.
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FIG. 12—Continued

the surface will grow at any point on the surface. When the mesh nodes that lie on the
vapor/surface interface are moved, the mesh distorts. Unless mesh maintenance operations
are performed, the distortion will accumulate such that any additional surface motion will
cause a mesh element to invert which will, in turn, cause the simulation to halt. Because
of the nature of the simulation, mesh maintenance must preserve the volume of the ma-
terial deposited or removed. Volume conserving smoothing of surface nodes is one part
of the mesh maintenance procedure; other parts include volume mesh smoothing (repo-
sitioning of nonsurface nodes—see Section 6), edge refinement, and grid connectivity
changes.

In this simulation, we are depositing a material onto a substrate which has been partially
masked with a second material. There is a square-shaped hole in the mask, and the unmasked
surface beneath the hole has a much higher sticking coefficient than the surrounding masked
substrate. Hence the major accumulation occurs in the central square region of the surface.
In this simulation, the surface motion is known to be smooth, but the method of motion
introduces unevenness and our volume conserving smoothing will recover the smooth sur-
face motion. To illustrate the beneficial effects of volume conserving smoothing, we ran
the simulation with and without the volume conserving smoothing step. In the simulation
with smoothing, the mesh was smoothed for three iterations every 0.1 s of simulation time
using Algorithm 4 withω = 1 and Algorithm 6 on the two sets of triple lines at and above
the substrate. Figure 12a shows the surface before the volume conserving smoothing step at
t = 0.8 s; view Fig. 12b after the smoothing step. As can be seen, very little change is made
to the surface by the volume conserving smoothing at any given time-step. Although at
each maintenance step the corrections to the mesh are minor, the cumulative effect is major.
Figure 12c shows the surface aftert = 0.504 s in a simulation where no volume conserving
smoothing was performed. At this point the mesh is so distorted that the simulation cannot
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proceed without inverting an element. We chose to perform volume conserving smoothing
for three iterations every 0.1 s, simply because we found this was the smallest amount
of smoothing that improved the mesh sufficiently for the simulation to complete success-
fully.

6. ADDITIONAL CONSIDERATIONS

Use of single node algorithms.In this paper we have presented three single node smooth-
ing algorithms (1, 3, and 5) and three edge smoothing algorithms (2, 4, and 6) that perform
volume conservative smoothing for curves, surfaces, and triple intersection lines. Because
of the existence of nonsmooth grids that are unaffected by the single node algorithms, we
advocate use of the edge relaxation algorithms. It must be noted that there are cases where
only the single node algorithms can be used. For instance, if there is a nodei in the interior
of a surface and all neighbors of that node are on the boundary, then there is no “interior”
edge that containsi that can be relaxed by Algorithm 4 in order to alter the position ofi .
Use of Algorithm 3 in this case, rather than simply leavingi untouched might be preferable.
The same consideration applies to the middle node of a triple line consisting of only two
segments. Algorithm 6 cannot be used to alter the position of this middle node, and so use of
Algorithm 5 rather than leaving the node untouched might be preferable. In our examples,
we did not do this extra coding and indeed it was unnecessary to do so since these problems
only occur with extremely coarse grids.

Topological anomalies. In the case of edge relaxations on triple lines, it is assumed that
each of materials 1, 2, and 3 are incident on the edgex1x2 as a single wedge. If, e.g. material
1 is incident onx1x2 as two separate wedges (i.e., the surface bounding material 1 intersects
itself atx1x2), the derivation of volume conservation for Algorithm 6does not applyand
volume will not be conserved. It is important, when coding this algorithm, to detect these
(rare) cases and refrain from relaxing these kinds of edges. Alternatively, one could perform
an a posterioricheck of volumes to verify conservation and reject node movements that
result in volume changes. (Of course, the volume check must only involve triangleslocal
to the area—i.e., detect possible volumechangerather than recalculate the whole volume
every time an edge is relaxed.)

Quadruple lines. One could probably devise a scheme that could conserve all volumes
incident on a quadruple line using edge smoothing, provided that corrective edge motions
more general than the rigid translation (18) are considered. We do not pursue this here, and
thus we leave any quadruple lines untouched.

Triangle collapse. Whenever using Laplacian smoothing on unstructured grids (or vir-
tually any other kind of smoothing scheme on unstructured grids), there is the possibility
that nodes are ejected from the polygon formed by their first neighbors and hence that
triangles are inverted. Thus it is prudent to always check the orientation or quality of trian-
gles after smoothing and reject disastrous moves (i.e., use “guards”). (In fact, we did not
use any guards in the sample runs in this paper.)

Smoothing functions of one or two variables.If the “curves” or “surfaces” we are
considering are the graphs of piecewise linear functions of one or two variables, we can use
Algorithms 1–4 to smooth the positions of the interior nodes while preserving the integrals
of the functions. However, one must reject any node or edge relaxation that would cause
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the graphs to become multi-valued. (This could occur when relaxing near steep portions of
the graphs.)

Volume mesh smoothing.If the goal of the user is to smooth surface meshes in a volume
conserving fashion, then the algorithms in this paper suffice. If, however, there are volume
elements conformally attached to the surface elements (e.g., triangles interior to a closed
piecewise linear curve or tetrahedra interior to a closed piecewise linear surface), then it is
possible to invert the volume elements when smoothing the surface elements. In this case
one can smooth the volume elements by repositioning “volume” nodes (nodes not on, but
interior to the enclosing surface) in tandem with smoothing of the surface nodes—and this
smoothing will avoid inversion of volume elements. In [1] and [7] smoothing of volume
elements is done by minimizing a functional which becomes infinite if volume elements
invert, and thus moving volume nodes by requiring minimization of the functional usually
avoids inversion of elements. Nevertheless, extreme deformation of surfaces and/or lack of
volume nodes to move can in principle lead to situations where changing of grid connectivity
might be the only way to avoid volume element inversion.
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